Sabtu, 22 Februari 2014

Bubble Sort

Bubble Sort

A.  Pengertian Bubble Sort

Bubble Sort adalah salah satu algoritma untuk sorting data, atau kata lainnya mengurutkan data dari yang terbesar ke yang terkecil atau sebaliknya (Ascending atau Descending).
Bubble sort (metode gelembung) adalah metode/algoritma pengurutan dengan dengan cara melakukan penukaran data dengan tepat disebelahnya secara terus menerus sampai bisa dipastikan dalam satu iterasi tertentu tidak ada lagi perubahan. Jika tidak ada perubahan berarti data sudah terurut. Disebut pengurutan gelembung karena masing-masing kunci akan dengan lambat menggelembung ke posisinya yang tepat.
        Metode pengurutan gelembung (Bubble Sort) diinspirasikan oleh gelembung sabun yang berada dipermukaan air. Karena berat jenis gelembung sabun lebih ringan daripada berat jenis air, maka gelembung sabun selalu terapung ke atas permukaan. Prinsip di atas dipakai pada pengurutan gelembung.
Algoritma bubble sort adalah salah satu algoritma pengurutan yang paling simple, baik dalam hal pengertian maupun penerapannya. Ide dari algoritma ini adalah mengulang proses pembandingan antara tiap-tiap elemen
array dan menukarnya apabila urutannya salah. Pembandingan elemen-elemen ini akan terus diulang hingga tidak perlu dilakukan penukaran lagi. Algoritma
ini termasuk dalam golongan algoritma comparison sort, karena menggunakan perbandingan dalam operasi antar elemennya. Berikut ini adalah gambaran dari algoritma bubble sort. Misalkan kita mempunyai sebuah array dengan.  Elemen-elemen “4 2 5 3 9”. Proses yang akan terjadi apabila digunakan algoritma bubblesort adalah sebagai berikut.

Pass pertama
(4 2 5 3 9) menjadi (2 4 5 3 9)
(2 4 5 3 9) menjadi (2 4 5 3 9)
(2 4 5 3 9) menjadi (2 4 3 5 9)
(2 4 3 5 9) menjadi (2 4 3 5 9)
Pass kedua
(2 4 3 5 9) menjadi (2 4 3 5 9)
(2 4 3 5 9) menjadi (2 3 4 5 9)
(2 3 4 5 9) menjadi (2 3 4 5 9)
(2 3 4 5 9) menjadi (2 3 4 5 9)
Pass ketiga
(2 3 4 5 9) menjadi (2 3 4 5 9)
(2 3 4 5 9) menjadi (2 3 4 5 9)
(2 3 4 5 9) menjadi (2 3 4 5 9)
(2 3 4 5 9) menjadi (2 3 4 5 9)


Dapat dilihat pada proses di atas, sebenarnya pada pass kedua, langkah kedua, array telah terurut. Namun algoritma tetap dilanjutkan hingga pass kedua berakhir. Pass ketiga dilakukan karena definisi terurut dalam algoritma bubblesort adalah tidak ada satupun penukaran pada suatu pass, sehingga pass ketiga dibutuhkan untuk memverifikasi keurutan array tersebut.

B.      Algoritma Bubble Sort

1.    Membandingkan data ke-i dengan data ke-(i+1) (tepat bersebelahan). Jika tidak sesuai maka tukar (data ke-i = data ke-(i+1) dan data ke-(i+1) = data ke-i). Apa maksudnya tidak sesuai? Jika kita menginginkan algoritme menghasilkan data dengan urutan ascending (A-Z) kondisi tidak sesuai adalah data ke-i > data ke-i+1, dan sebaliknya untuk urutan descending (A-Z).
2.    Membandingkan data ke-(i+1) dengan data ke-(i+2). Kita melakukan pembandingan ini sampai data terakhir. Contoh: 1 dgn 2; 2 dgn 3; 3 dgn 4; 4 dgn 5 … ; n-1 dgn n.
3.    Selesai satu iterasi, adalah jika kita sudah selesai membandingkan antara (n-1) dgn n. Setelah selesai satu iterasi kita lanjutkan lagi iterasi berikutnya sesuai dengan aturan ke-1. mulai dari data ke-1 dgn data ke-2, dst.
4.    Proses akan berhenti jika tidak ada pertukaran dalam satu iterasi.

Contoh Kasus Bubble Sort :

Misalkan kita punya data seperti ini: 6, 4, 3, 2 dan kita ingin mengurutkan data ini (ascending) dengan menggunakan bubble sort. Berikut ini adalah proses yang terjadi:
Iterasi ke-1: 4, 6, 3, 2 :: 4, 3, 6, 2 :: 4, 3, 2, 6 (ada 3 pertukaran)
Iterasi ke-2: 3, 4, 2, 6 :: 3, 2, 4, 6 :: 3, 2, 4, 6 (ada 2 pertukaran)
Iterasi ke-3: 2, 3, 4, 6 :: 2, 3, 4, 6 :: 2, 3, 4, 6 (ada 1 pertukaran)
Iterasi ke-4: 2, 3, 4, 6 :: 2, 3, 4, 6 :: 2, 3, 4, 6 (ada 0 pertukaran) -> proses selesai

     C.      Kompleksitas Algoritma Bubble Sort


Kompleksitas Algoritma Bubble Sort dapat dilihat dari beberapa jenis kasus, yaitu worst-case, average-case, dan best-case.

Kondisi Best-Case


Dalam kasus ini, data yang akan disorting telah terurut sebelumnya, sehingga proses perbandingan hanya dilakukan sebanyak (n-1) kali, dengan satu kali pass.
Proses perbandingan dilakukan hanya untuk memverifikasi keurutan data. Contoh Best-Case dapat dilihat pada pengurutan data “1 2 3 4” di bawah ini.

Pass Pertama
(1 2 3 4) menjadi (1 2 3 4)
(1 2 3 4) menjadi (1 2 3 4)
(1 2 3 4) menjadi (1 2 3 4)

Dari proses di atas, dapat dilihat bahwa tidak terjadi penukaran posisi satu kalipun, sehingga tidak dilakukan pass selanjutnya. Perbandingan elemen dilakukan sebanyak tiga kali. Proses perbandingan pada kondisi ini hanya dilakukan sebanyak (n-1) kali. Persamaan Big-O yang diperoleh dari proses ini adalah O(n). Dengan kata lain, pada kondisi Best-Case algoritma Bubble Sort termasuk pada algoritma
lanjar.


  Kondisi Worst-Case
 Dalam kasus ini, data terkecil berada pada ujung array. Contoh Worst-Case dapat dilihat pada pengurutan data “4 3 2 1” di bawah ini

Pass Pertama
(4 3 2 1) menjadi (3 4 2 1)
(3 4 2 1) menjadi (3 2 4 1)
(3 2 4 1) menjadi (3 2 1 4)
Pass Kedua
(3 2 1 4) menjadi (2 3 1 4)
(2 3 1 4) menjadi (2 1 3 4)
(2 1 3 4) menjadi (2 1 3 4)
Pass Ketiga
(2 1 3 4) menjadi (1 2 3 4)
(1 2 3 4) menjadi (1 2 3 4)
(1 2 3 4) menjadi (1 2 3 4)
Pass Keempat
(1 2 3 4) menjadi (1 2 3 4)
(1 2 3 4) menjadi (1 2 3 4)
(1 2 3 4) menjadi (1 2 3 4)

Dari langkah pengurutan di atas, terlihat bahwa setiap kali melakukan satu pass, data terkecil akan bergeser ke arah awal sebanyak satu step. Dengan kata lain, untuk menggeser data terkecil dari urutan keempat menuju urutan pertama, dibutuhkan pass sebanyak tiga kali, ditambah satu

kali pass untuk memverifikasi. Sehingga jumlah proses pada kondisi best case dapat dirumuskan sebagai berikut. Jumlah proses = n2+n (3)
Dalam persamaan (3) di atas, n adalah jumlah elemen yang akan diurutkan. Sehingga notasi Big-O yang didapat adalah O(n2). Dengan kata lain, pada kondisi worst-case, algoritma Bubble Sort termasuk dalam kategori algoritma kuadratik.

  Kondisi Average-Case
 Pada kondisi average-case, jumlah pass ditentukan dari elemen mana yang mengalami penggeseran ke kiri paling banyak. Hal ini dapat ditunjukkan oleh proses pengurutan suatu array, misalkan saja (1 8 6 2). Dari (1 8 6 2), dapat dilihat bahwa yang akan mengalami proses penggeseran paling banyak adalah elemen 2, yaitu sebanyak dua kali.

Pass Pertama
(1 8 6 2) menjadi (1 8 6 2)
(1 8 6 2) menjadi (1 6 8 2)
(1 6 8 2) menjadi (1 6 2 8)
Pass Kedua
(1 6 2 8) menjadi (1 6 2 8)
(1 6 2 8) menjadi (1 2 6 8)
(1 2 6 8) menjadi (1 2 6 8)
Pass Ketiga
(1 2 6 8) menjadi (1 2 6 8)
(1 2 6 8) menjadi (1 2 6 8)
(1 2 6 8) menjadi (1 2 6 8)

Dari proses pengurutan di atas, dapat dilihat bahwa untuk mengurutkan diperlukan dua buah passing, ditambah satu buah passing untuk memverifikasi. Dengan kata lain, jumlah proses perbandingan dapat dihitung sebagai berikut. Jumlah proses = x2+x (4) Dalam persamaan (4) di atas, x adalah jumlah penggeseran terbanyak. Dalam hal ini, x tidak pernah lebih besar dari n, sehingga x dapat dirumuskan sebagai
Dari persamaan (4) dan (5) di atas, dapat disimpulkan bahwa notasi
big-O nya adalah O(n2). Dengan kata lain, pada kondisi average case algoritma Bubble Sort termasuk dalam algoritma kuadratik.

D.      Implementasi dalam Pseudo-Code
Setiap algoritma akan memiliki implementasi yang berbeda, tergantung dari bahasa program yang dipakai. Oleh karena itu berikut ini adalah pseudo-code dari algoritma bubblesort, untuk memudahkan implementasi bubblesort pada bahasa apapun.

procedure bubbleSort( A : list of
sortable items ) defined as:
do
swapped := false
for each i in 0 to length(A) - 2

inclusive do:
if A[i] > A[i+1] then
swap( A[i], A[i+1] )
swapped := true
end if
end for
while swapped
end procedure

E.       Kelebihan dan Kelemahan Bubble Sort

Kelebihan :
•      Metode Buble Sort merupakan metode yang paling simpel
•      Metode Buble Sort mudah dipahami algoritmanya

Kelemahan:
Meskipun simpel metode Bubble sort  merupakan metode pengurutan yang paling tidak efisien.  Kelemahan buble sort adalah pada saat mengurutkan data yang sangat besar akan mengalami kelambatan luar biasa, atau dengan kata lain kinerja memburuk cukup signifikan ketika data yang diolah jika  data cukup banyak. Kelemahan lain adalah jumlah pengulangan akan tetap sama jumlahnya walaupun data sesungguhnya sudah cukup terurut. Hal ini disebabkan setiap data dibandingkan dengan setiap data yang lain untuk menentukan posisinya.

Contoh penerapan Algoritma Bubble Sort dalam Bahasa C ( Code Blocks ) :

#include <stdio.h>
#include <conio.h>
#define n 5
void main()
{
 int A[n] = {13,12,9,5,18,};
        int X, I, K;
        printf("Sebelum di-sort\n");
        for (I=0; I <= n-1; I++)
            printf("%3i", A[I]);
        printf("\n");

        K=0;
        while(K<=n-2)
        {
            I=0;
            while(I<=n-2 - K)
            {
                if (A[I] > A[I+1])
                {
                    X = A[I];
                    A[I] = A[I+1];
                    A[I+1] = X;                }
                I++;
            }
            K++;
        }
        printf("Sesudah di-sort\n");
        for (I=0; I<= n-1; I++)
            printf("%3d", A[I]);

    return 0;
Outputnya adalah :

Sebelum di-sort :  13, 12, 9, 5, 18


Sesudah di-sort : 5, 9, 12, 13, 18



Contoh penerapan Algoritma Bubble Sort dalam PHP :
1.  <?php
2.  define ("n", 7);
3.  $A = array(15,10,7,22,17,5,12);
4.  echo "<h1>Sebelum di-sort</h1>";
5.  for ($I=0; $I <= n-1; $I++)
6.      echo "$A[$I] ";
7.  
8.  $K=0;
9.  while($K<=n-2)
10.{
11.    $I=0;
12.    while($I<=n-2 - $K)
13.    {
14.        if ($A[$I] > $A[$I+1])
15.        {
16.            $X = $A[$I];
17.            $A[$I] = $A[$I+1];
18.            $A[$I+1] = $X;
19.        }
20.        $I++;
21.    }
22.    $K++;
23.}
24.echo "<h1>Sesudah di-sort</h1>";
25.for ($I=0; $I<= n-1; $I++)
26.    echo "$A[$I] ";
27.?>

Sabtu, 15 Februari 2014

Program Sequential search pada C++

Contoh Programnya :

#include <iostream>
#include <conio.h>
using namespace std;


int main()
{
    int i;
    int cari,ketemu;
    int A[100] ;

    cout<<"Program Searching\n";
    cout<<"Masukkan 7 buah data : \n\n";
    for (i=1;i<=7;i++)
    {
        cout<<"Masukkan data ke-"<<i<<endl;
        cin>>A[i];
    }
    cout<<endl;
    cout<<"input bilangan yang dicari :";
    cin>>cari;

    ketemu=0;
    for(i=0;i<=7;i++)
    {
        if (A[i]==cari)
        {
            ketemu=1;
            cout<<"Data ditemukan pada indeks ke-"<<i;
        }
    }

    if (ketemu==0){
        cout<<"Data tidak ditemukan";
        }

        getch();

}



Program searching :
Masukkan 7 buah data :

Masukkan data ke- 1 :  14

Masukkan data ke- 2 : 12

Masukkan data ke- 3 : 17 

Masukkan data ke- 4 : 16

Masukkan data ke- 5 : 14 

Masukkan data ke- 6 : 14

Masukkan data ke- 7 : 13


Input bilangan yang dicari : 14


Data ditemukan pada indeks ke-1,   data ditemukan pada indeks ke-5, dan data ditemukan pada indeks ke-6.





Sabtu, 08 Februari 2014

Algoritma dan Pemrograman

1.  Apakah Itu Algoritma

Ditinjau dari asal-usul katanya, kata Algoritma sendiri mempunyai sejarah yang aneh. Orang hanya menemukan kata algorism yang berarti proses menghitung dengan angka arab. Anda dikatakan algorist jika Anda menghitung menggunakan angka arab. Para ahli bahasa berusaha menemukan asal kata ini namun hasilnya kurang memuaskan. Akhirnya para ahli sejarah matematika menemukan asal kata tersebut yang berasal dari nama penulis buku arab yang terkenal yaitu Abu Ja’far Muhammad Ibnu Musa Al-Khuwarizmi. Al-Khuwarizmi dibaca orang barat menjadi Algorism. Al-Khuwarizmi menulis buku yang berjudul Kitab Al Jabar Wal-Muqabala yang artinya “Buku pemugaran dan pengurangan” (The book of restoration and reduction). Dari judul buku itu kita juga memperoleh akar kata “Aljabar” (Algebra). Perubahan kata dari algorism menjadi algorithm muncul karena kata algorism sering dikelirukan dengan arithmetic, sehingga akhiran –sm berubah menjadi –thm. Karena perhitungan dengan angka Arab sudah menjadi hal yang biasa, maka lambat laun kata algorithm berangsur-angsur dipakai sebagai metode perhitungan (komputasi) secara umum, sehingga kehilangan makna kata aslinya. Dalam bahasa Indonesia, kata algorithm diserap menjadi algoritma.

2.  Definisi Algoritma
“Algoritma adalah urutan langkah-langkah logis penyelesaian masalah yang disusun secara sistematis dan logis”. Kata logis merupakan kata kunci dalam algoritma. Langkah-langkah dalam algoritma harus logis dan harus dapat ditentukan bernilai salah atau benar. Dalam beberapa konteks, algoritma adalah spesifikasi urutan langkah untuk melakukan pekerjaan tertentu. Pertimbangan dalam pemilihan algoritma adalah, pertama, algoritma haruslah benar. Artinya algoritma akan memberikan keluaran yang dikehendaki dari sejumlah masukan yang diberikan. Tidak peduli sebagus apapun algoritma, kalau memberikan keluaran yang salah, pastilah algoritma tersebut bukanlah algoritma yang baik.
Pertimbangan kedua yang harus diperhatikan adalah kita harus mengetahui seberapa baik hasil yang dicapai oleh algoritma tersebut. Hal ini penting terutama pada algoritma untuk menyelesaikan masalah yang memerlukan aproksimasi hasil (hasil yang hanya berupa pendekatan). Algoritma yang baik harus mampu memberikan hasil yang sedekat mungkin dengan nilai yang sebenarnya.

Ketiga adalah efisiensi algoritma. Efisiensi algoritma dapat ditinjau dari 2 hal yaitu efisiensi waktu dan memori. Meskipun algoritma memberikan keluaran yang benar (paling mendekati), tetapi jika kita harus menunggu berjam-jam untuk mendapatkan keluarannya, algoritma tersebut biasanya tidak akan dipakai, setiap orang menginginkan keluaran yang cepat. Begitu juga dengan memori, semakin besar memori yang terpakai maka semakin buruklah algoritma tersebut. Dalam kenyataannya, setiap orang bisa membuat algoritma yang berbeda untuk menyelesaikan suatu permasalahan, walaupun terjadi perbedaan dalam menyusun algoritma, tentunya kita mengharapkan keluaran yang sama. Jika terjadi demikian, carilah algoritma yang paling efisien dan cepat.

3.  Beda Algoritma dan Program
Program adalah kumpulan pernyataan komputer, sedangkan metode dan tahapan sistematis dalam program adalah algoritma. Program ditulis dengan menggunakan bahasa pemrograman. Jadi bisa disebut bahwa program adalah suatu implementasi dari bahasa pemrograman. Beberapa pakar memberi formula bahwa :
Program = Algoritma + Bahasa (Struktur Data)
Bagaimanapun juga struktur data dan algoritma berhubungan sangat erat pada sebuah program. Algoritma yang baik tanpa pemilihan struktur data yang tepat akan membuat program menjadi kurang baik, demikian juga sebaliknya.
Pembuatan algoritma mempunyai banyak keuntungan di antaranya :
Pembuatan atau penulisan algoritma tidak tergantung pada bahasa pemrograman manapun, artinya penulisan  algoritma independen dari bahasa pemrograman dan komputer yang melaksanakannya.
Notasi algoritma dapat diterjemahkan ke dalam berbagai bahasa pemrograman.
Apapun bahasa pemrogramannya, output yang akan dikeluarkan sama karena algoritmanya sama.

Beberapa hal yang perlu diperhatikan dalam membuat algoritma :

Teks algoritma berisi deskripsi langkah-langkah penyelesaian masalah. Deskripsi tersebut dapat ditulis dalam notasi apapun asalkan mudah dimengerti dan dipahami.
Tidak ada notasi yang baku dalam penulisan teks algoritma seperti notasi bahasa pemrograman. Notasi yang digunakan dalam menulis algoritma disebut notasi algoritmik.
Setiap orang dapat membuat aturan penulisan dan notasi algoritmik sendiri.
 Hal ini dikarenakan teks algoritma tidak sama dengan teks program. Namun, supaya notasi algoritmik mudah ditranslasikan ke dalam notasi bahasa pemrograman tertentu, maka sebaiknya notasi algoritmik tersebut berkorespondensi dengan notasi bahasa pemrograman secara umum.

Notasi algoritmik bukan notasi bahasa pemrograman, karena itu pseudocode dalam notasi algoritmik tidak dapat dijalankan oleh komputer. Agar dapat dijalankan oleh komputer, pseudocode dalam notasi algoritmik harus ditranslasikan atau diterjemahkan ke dalam notasi bahasa pemrograman yang dipilih. 
Perlu diingat bahwa orang yang menulis program sangat terikat dalam aturan tata bahasanya dan spesifikasi mesin yang menjalannya.
Algoritma sebenarnya digunakan untuk membantu kita dalam mengkonversikan suatu permasalahan ke dalam bahasa pemrograman.

Algoritma merupakan hasil pemikiran konseptual, supaya dapat dilaksanakan oleh komputer, algoritma harus ditranslasikan ke dalam notasi bahasa pemrograman. Ada beberapa hal yang harus diperhatikan pada translasi tersebut, yaitu :

a.  Pendeklarasian variabel
Untuk mengetahui dibutuhkannya pendeklarasian variabel dalam penggunaan bahasa pemrograman apabila    tidak semua bahasa pemrograman membutuhkannya.

b.  Pemilihan tipe data
Apabila bahasa pemrograman yang akan digunakan membutuhkan pendeklarasian variabel maka perlu hal ini dipertimbangkan pada saat pemilihan tipe data.

c.  Pemakaian instruksi-instruksi
Beberapa instruksi mempunyai kegunaan yang sama tetapi masing-masing memiliki kelebihan dan kekurangan yang berbeda.

d.  Aturan sintaksis
Pada saat menuliskan program kita terikat dengan aturan sintaksis dalam bahasa pemrograman yang akan digunakan.

e.  Tampilan hasil
Pada saat membuat algoritma kita tidak memikirkan tampilan hasil yang akan disajikan. Hal-hal teknis ini diperhatikan ketika mengkonversikannya menjadi program.

f.  Cara pengoperasian compiler atau interpreter.
Bahasa pemrograman yang digunakan termasuk dalam kelompok compiler atau interpreter.

Perbedaan Fungsi dan Prosedur

Seperti yang kita tau bahwa dalam bahasa pemrograman apapun pastilah memiliki istilah yang disebut dengan function dan procedure. Tidak peduli kamu menggunakan bahasa pemrograman apapun, seperti Java, C++, Visual Basic, dan bahasa pemrograman lainnya, pastilah mengenal kedua istilah ini. Lalu apa yang membedakan antara functiond dan procedure, dan kapan kita perlu menggunakan function dan kapan kita perlu menggunakan procedure ?

Oke saya akan mencoba membahasnya. Perbedaan antara function dan procedure adalah : kalau function dia akan mengembalikan suatu nilai pada  pemanggilnya, sedangkan kalau procedure dia tidak akan mengembalikan nilai apapun pada fungsi pemanggilnya. Untuk lebih jelasnya saya akan memberikan contoh studi kasus program untuk menghitung luas persegi panjang dalam bahasa Java. Berikut ini merupakan source code procedure yang digunakan untuk menghitung luas persegi panjang

public void HitungLuasPersegiPanjang(int p, int l)
{
int luasPersegiPanjang;

luasPersegiPanjang = p * l;

System.out.println(“Luas persegi panjang = ” + ” ” + luasPersegiPanjang);
}

Berikut ini merupakan source code function untuk menghitung luas persegi panjang

public int HitungLuasPersegiPanjang(int p, int l)
{
int luasPersegiPanjang;

luasPersegiPanjang = p * l;
return luasPersegiPanjang;
}

Perhatikan kata yang saya cetak tebal baik pada source code procedure maupun source code function. Seperti yang telah disebutkan diatas bahwa procedure tidak mengembalikan suatu nilai apapun pada fungsi pemanggilnya sehingga tipe data yang digunakan adalah void. Sedangkan tipe data yang digunakan pada function adalah tipe data sesuai dengan nilai yang dikembalikan. Pada kasus ini tipe data yang digunakan untuk menghitung luas persegi panjang adalah integer (dideklarasikan sebagai int di Java).  Perbedaan berikutnya, kalau pada function terdapat statement return yang berguna untuk mengembalikan nilai pada pemanggilnya. Sedangkan pada procedure tidak terdapat statement return. Pada procedure HitungLuasPersegiPanjang, setelah nilai luas persegi panjang didapatkan, maka nilai luasnya akan langsung dicetak. Hal ini ditandai dengan statement System.out.println. Perbedaan berikutnya adalah cara pemanggilan. Untuk procedure pemanggilan dilakukan dengan memanggil nama procedurenya saja. Untuk function pemanggilan harus menggunakan variabel untuk menampung nilai yang dikembalikan oleh function. Untuk lebih jelasnya coba perhatikan cara pemanggilan procedure dan function dibawah ini

Cara memanggil procedure

HitungLuasPersegiPanjang(p, l);

Cara memanggil function

luas = HitungLuasPersegiPanjang(p, l);

Untuk pemanggilan procedure cukup dituliskan nama procedurenya, yaitu HitungLuasPersegiPanjang lengkap dengan parameter procedurenya yaitu p, dan l. Sedangkan untuk memanggil function HitungLuasPersegiPanjang, maka nilai luas persegi panjang yang dikembalikan oleh function ini harus  ditampung terlebih dahulu di variabel yang bernama luas. Dimana variabel ini harus memiliki tipe data yang sama dengan tipe data function, yaitu integer. Nama function harus ditulis lengkap dengan parameter functionnya, yaitu p dan l.

Kapan waktunya kita menggunakan fungsi dan prosedur ?. Anda dapat menggunakan fungsi apabila anda membuat suatu method yang perlu mengembalikan nilai pada pemanggilnya. Sedangkan kamu perlu menggunakan procedure apabila method tersebut tidak perlu untuk mengembalikan nilai ke pemanggilnya. Pada contoh kasus HitungLuasPersegiPanjang ini method yang lebih cocok dipakai adalah function daripada procedure. Hal ini disebabkan karena method ini digunakan untuk menghitung luas persegi panjang, dimana nilai yang perlu dikembalikan pada fungsi pemanggilnya adalah nilai luas persegi panjang.

Jumat, 07 Februari 2014

Definisi Array

Array adalah kumpulan data bertipe sama yang menggunakan nama sama.
 Dengan menggunakan array, sejumlah variabel dapat memakai nama yang sama. Antara satu variabel dengan variabel lain di dalam array dibedakan berdasarkan subscript. Sebuah subscript berupa bilangan di dalam kurung siku.

Array dapat dibedakan menjadi :
1. Array berdimensi satu
2. Array berdimensi dua
3. Array berdimensi tiga

Array Berdimensi Satu

      Contoh array berdimensi satu, misalnya menginputkan 5 buah data temperatur. Dan kelima data tersebut disimpan pada array bernama suhu.

Contoh 1 :
#include
#include

void main()
{
float suhu[5];
// array dengan 5 elemen bertipe float
// Membaca data dari keyboard dan meletakkan ke array
cout << "Masukkan 5 buah data suhu" << endl;
for (int i=0; i<5; i++)
{
cout << i + 1 << " : "; cin >> suhu[i];
}

// Menampilkan isi array ke layar
cout << "Data suhu yang dimasukkan : " << endl;
for (i=0; i<5; i++)
cout << suhu[i] << endl;
}
Mendefinisikan array
Float suhu[5]; float : Tipe elemen array suhu : Nama array [5] : Jumlah elemen array Maka array suhu dapat menyimpan data sebanyak 5 buah.  Subscript dari array selalu dimulai dari nol. Misal, jika jumlah elemen array [5], maka index dari array tersebut yaitu 0, 1, 2, 3, 4.  Mengakses elemen array Setelah suatu array didefinisikan, elemen array dapat diakses dengan bentuk : suhu[i] menyatakan “elemen suhu dengan subscript sama dengan i” Perintah seperti cin >> suhu[i]; berarti “membaca data dari keyboard dan meletakkan ke elemen nomor i pada array suhu”.
Perintah seperti cout >> suhu[i]; berarti “menampilkan elemen bernomor i pada array suhu”.


Contoh 2 :
#include
#include

const int jum_data = 5;
void main()
{
float suhu[jum_data]; // array suhu
float total; // untuk menampung total suhu

// Membaca data dari keyboard dan meletakkan ke array
cout << "Masukkan 5 buah data suhu" << endl; for (int i=0; i<5; i++) { cout << i + 1 << " : "; cin >> suhu[i];
}
// Menghitung nilai rata-rata
total = 0; // Mula-mula diisi dengan nol
for(i=0; i<< "Suhu rata-rata= " << total/jum_data << endl; }  Memberikan nilai awal terhadap array Seperti halnya variabel biasa, array juga dapat diberi nilai awal (diinisialisasikan) pada saat didefinisikan. Misalnya: int jum_hari[12]={ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; Catatan: C++ secara otomatis akan memberikan nilai awal nol terhadap array yang bersifat global. Jika bersifat lokal, maka harus diatur terlebih dahulu. Contoh 3 : #include
#include
#include

void main()
{
// Pendefinisian array jum_hari dan pemberian nilai awal
int jum_hari[12]={ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
// Tampilkan isi jum_hari
cout << "Masukkan 5 buah data suhu" << endl; for (int i=0; i<12; i++) { cout << "jum_hari[" << i << "] =" << jum_hari[i] << endl; } } Array Berdimensi Dua Sebagai gambaran, data kelulusan dari jurusan Teknik Informatika, Manajemen Informatika, dan Teknik Komputer dari tahun 1992 hingga 1995. Nama 1992 1993 1994 1995 Teknik Informatika 35 45 80 120 Manajemen Informatika 100 110 70 101 Teknik Komputer 10 15 20 17  Mendefinisikan array berdimensi dua Bentuk diatas dapat dibentuk dalam array berdimensi dua, pendefinisiannya : int nilai[3][4]; Pada pendefinisian di atas :  3 menyatakan jumlah baris (mewakili nama)  4 menyatakan jumlah kolom (mewakili nilai)  Mengakses array berdimensi dua Masing-masing elemen di dalam array berdimensi dua dapat diakses dengan bentuk : Baris dan kolom dimulai dari 0. Contoh pengaksesan elemen array berdimensi dua : 1. data_lulus[1][2] = 5; Merupakan instruksi untuk memberikan nilai 5 ke baris 1 kolom 2. 2. cout << data_lulus[1][2]; Merupakan perintah untuk menampilkan elemen data_lulus dengan subscript pertama (baris) berupa 1 dan subscript kedua (kolom) bernilai 2. Contoh 4 : #include
#include

void main()
{
int data_lulus[3][4]; // Array berdimensi dua
int tahun, jurusan;

// Memberikan data ke elemen array data_lulus
data_lulus[0][0] = 35; // TI - 1992
data_lulus[0][1] = 45; // TI - 1993
data_lulus[0][2] = 90; // TI - 1994
data_lulus[0][3] = 120; // TI - 1995
data_lulus[1][0] = 100; // MI - 1992
data_lulus[1][1] = 110; // MI - 1993
data_lulus[1][2] = 70; // MI - 1994
data_lulus[1][3] = 101; // MI - 1995
data_lulus[2][0] = 10; // TK - 1992
data_lulus[2][1] = 15; // TK - 1993
data_lulus[2][2] = 20; // TK - 1994
data_lulus[2][3] = 17; // TK - 1995

// Proses untuk memperoleh informasi kelulusan
while(1)
{
cout << "Jurusan (0 = TI, 1 = MI, 2 = TK): "; cin >> jurusan;
if ((jurusan==0) || (jurusan==1) || (jurusan==2))
break; // keluar dari while
}
while(1)
{
cout << "Tahun (1992 - 1995): "; cin >> tahun;

if ((tahun >= 1992) && (tahun <= 1995)) { tahun -= 1992; // konversi ke 0, 1, 2 atau 3 break; // keluar dari while } } cout << "Jumlah yang lulus = " << data_lulus[jurusan][tahun] << endl; } Melewatkan Array Sebagai Argumen Fungsi  Array juga dapat berkedudukan sebagai parameter di dalam fungsi. Misalnya : const int MAKS = 5 int data[MAKS]; Dari data di atas, fungsi yang menerima array di atas dapat dibuat prototipe-nya sebagai berikut : void inisialisasi_data(data[MAKS]); Dan deklarasi fungsi sebagai berikut : void inisialisasi_data(data[], int & jumlah); Pada contoh kedua, tanda di dalam tanda [ ] tidak terdapat apa-apa dan parameter kedua digunakan untuk menyatakan jumlah elemen array serta berkedudukan sebagai referensi (bisa diubah dari dalam fungsi inisialisasi_data()). Contoh 5 : #include
#include
#include
#include

const int MAKS = 100;
void inisialisasi_data(int data[], int &jumlah);
void main()
{
int data_acak[MAKS]; // array berdimensi satu
int jumlah;
inisialisasi_data(data_acak, jumlah);

// Tampilkan elemen-elemen array
cout << "Isi array : " << endl; for(int i=0; i<< data_acak[i] << endl; } // Definisi fungsi void inisialisasi_data(int data[], int &jumlah) { while(1) { cout << "Berapa jumlah data yang ingin" << endl; cout << "dibangkitkan secara acak (5 - 100) ? "; cin >> jumlah;

if ((jumlah >= 5) && (jumlah<=100)) break; } randomize(); // Menyetel pembangkit bilangan acak for(int i=0; i
#include
#include

const int BARIS = 5;
const int KOLOM = 5;
void isi_matriks(float mat[][KOLOM], int &brs, int &kol);

void main()
{
float matriks[BARIS][KOLOM];
int jum_baris, jum_kolom;
int i,j;

isi_matriks(matriks, jum_baris, jum_kolom);
cout << "\nMatriks yang terbentuk: " << endl; cout << setiosflags(ios::fixed); // ios::fixed --> mengatur angka yg dimasukkan dalam bentuk angka biasa
// bukan dalam bentuk eksponen
for (i=0; i<< setw(12) << setprecision(5) << matriks[i][j]; // setprecision(5) --> mengatur banyak angka dibelakang koma
cout << endl; } } // Definisi Fungsi void isi_matriks(float mat[][KOLOM], int &brs, int &kol) { int i,j; cout << "Pastikan jumlah baris dan kolom" << endl; cout << "tidak melebihi 5" << endl; cout << "Jumlah baris = "; cin >> brs;
cout << "Jumlah kolom = "; cin >> kol;
for (i=0; i< brs; i++) for (j=0; j<< "Elemen " << i << ", " << j << " = "; cin >> mat[i][j];
}
}

Mengurutkan Data
Salah satu mengurutkan data adalah dengan menggunakan bubble sort. Pengurutan dilakukan dengan membandingkan setiap elemen dengan seluruh elemen yang terletak sesudah posisinya.

Contoh 7 :
#include
#include
#include

void main()
{
int i, j, tmp, jumdata;
int data[] = {5, 100, 20, 31, 77, 88, 99, 20, 55, 1};
jumdata = sizeof(data)/sizeof(int);

// Menampilkan data
cout << "Data semula: " << endl; for(i=0; i<< setw(4) << data[i]; cout << endl; // Pindah baris // Mengurutkan data for(i=0; i data[j])
{
tmp = data[i];
data[i] = data[j];
data[j] = tmp;
}

// Menampilkan data
cout << "Data setelah diurutkan: " << endl;
for (i=0; i
cout << setw(4) << data[i];
cout << endl; // Pindah baris
}